Code: EC3T6, EE3T6

II B.Tech - I Semester - Regular/Supplementary Examinations November - 2018

SWITCHING THEORY AND LOGIC DESIGN

(Common for EEE, ECE)
Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Convert (2468) $)_{10}$ to ($)_{16}$.
b) State and prove consensus theorem.
c) What are the advantages of tabulation method over K-map.
d) Convert the given expression into canonical SOP form $\mathrm{F}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
e) Why do go for priority encoder rather than normal encoder?
f) Implement the following functions using Demultiplexer.

$$
\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,3,7) \quad \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(1,2,5)
$$

g) Write a brief note on PLDs.
h) Give the comparison between Combinational and Sequential circuits.
i) Convert D-flip flop into SR flip flop.
j) Draw and explain Moore model.
k) Write the limitations of the state machines.

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Explain the concept of positive logic and negative logic. Also draw the truth tables for positive logic AND gate and negative logic OR gate.
b) Obtain the dual of the following Boolean expressions
i) $A B+\overline{A C}+A \bar{B} C$
ii) $\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}$
3. a) Draw the multiple level NOR circuit for the following expression:

$$
\mathrm{A}(\mathrm{~B}+\mathrm{C}+\mathrm{D})+\mathrm{BCD}
$$

b) Draw a NAND logic diagram that implements the complement of the following function. 8 M
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,3,4,8,9,12)$
4. a) Implement the following Boolean functions using PROM $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,1,2,4)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,5,6,7)$
b) Discuss a few applications of multiplexers and distinguish between multiplexer and decoder.
5. a) Explain the operation of negative edge triggered J-K -flip-flop with active low preset and clear using NAND gates. Give its truth table.
b) What is shift Register? Draw the block diagram and timing diagram of a shift register that shows the serial transfer of information from register A to register B.
6. a) Design a serial adder based on Mealy model.
b) Write down the steps involved in Synchronous sequential machines. Explain it with example.

